Fetal Musculoskeletal System & Skeletal Dysplasias

Mani Montazemi, RDMS
Director of Ultrasound Education & Quality Assurance
Baylor College of Medicine
Division of Maternal-Fetal Medicine
Maternal Fetal Center Imaging Manager
Texas Children’s Hospital, Pavilion for Women
Houston, Texas
&
Clinical Instructor
Thomas Jefferson University Hospital - Radiology Department
Philadelphia, Pennsylvania

Let me Count the Whys

1. Rare (2.4 per 10,000)
2. Most die (23% still born & 32% in 7 days)
3. Nearly 300 different types
4. Only a few can be accurately diagnosed with targeted ultrasound
5. It’s life & death if you make a mistake

Normal Skeletal Development

• 6 weeks
 - Vertebral bodies
• 7 weeks
 - Skull
• 8th weeks
 - Limb buds, Mandible, clavicle
• 9th weeks
 - Femur, humerus
• 10 weeks
 - Tibia / fibula, radius / ulna
• 11 weeks
 - Digits of hands & feet

Skeletal Dysplasias

• Why do we dread them?
There’s more to musculoskeletal evaluation than diagnosing skeletal dysplasia...

What to Look For?
- Length of extremities
- Shape of extremities
- Mineralization
- Movement
- Associated abnormalities in other systems

What to Look For?
- Length of extremities

Length of Extremities
- Possible causes of long bone length less than 2 SD below the mean for gestational age
 - Incorrect dates
 - Abnormal karyotype
 - IUGR
 - Constitutionally short stature
 - Isolated skeletal anomaly
 - Skeletal dysplasia

Ratio Between the FL & Other Body Measurements
- The femur length & foot are of comparable length in the normal fetus

Initial Questions
- What has been the interval growth of the femur length?
Interval Growth of the Femur

- From 16 to 22 weeks gestation the mean length of all long bones increases by between 2.5-2.7 mm/week.
- A fetus with OI type II may have an abnormal FL at 15 weeks gestation.
- A fetus with heterozygous achondroplasia may not have abnormally short until 21-27 weeks gestation.

Initial Questions

- Is the ratio between the femur length and other body measurements appropriate?

What to Look For?

- Length of extremities
- Shape and fractures of extremities

Ratio Between the FL & Other Body Measurements

- Femur length-HC ratio more than 3 SD below the mean suggests a skeletal dysplasia.
- Femur length-AC ratio < 0.16 suggests lung hypoplasia.
- Femur length-foot length ratio of <1 suggests skeletal dysplasia.
- Chest circumference/abdominal circumference ratio < 0.8 suggests lethality.

What to Look For?

- Length of extremities
- Shape and fractures of extremities
- Mineralization
Hypophosphatasia

- Demineralized segment where the vertebral bodies have a “ghost” outline and no acoustic shadowing

What to Look For?

- Length of extremities
- Shape and fractures of extremities
- Mineralization
- Movement

What to Look For?

- Length of extremities
- Shape and fractures of extremities
- Mineralization
- Movement
- Associated abnormalities in other systems
 - Head, Thorax & spine

Narrow Chest

- Hypoplastic thorax occurs in many skeletal dysplasias
 - Thanatophoric dysplasia
 - Achondrogenesis
 - Hypophosphatasia
 - Camptomelic dysplasia
 - Osteogenesis imperfecta
 - Chondroectodermal dysplasia
 - Short rib polydactyly

Shortening of the Extremities

- Rhizomelia
- Mesomelia
- Micromelia
- Acromelia

Rhizomelia

- The proximal portion of the limb is reduced in size (humerus or femur)
Rhizomelia – Associated Findings

- Thanatophoric dysplasia
- Atelosteogenesis
- Chondrodysplasia punctata (rhizomelic type)
- Diastrophic dysplasia
- Congenital short femur
- Achondroplasia

Mesomelia

- The mid-limb (ulna/radius and or tibia/fibula) is reduced in size

Micromelia

- The entire limb is reduced

Micromelia – Associated Findings

- Achondrogenesis
- Atelosteogenesis
- Short-rib polydactyly syndrome (types I & III)
- Diastrophic dysplasia
- Fibrochondrogenesis
- Osteogenesis imperfecta (type II)
- Kniest dysplasia
- Dyssegmental dysplasia

Acromelia

- The hands or feet are reduced in size
Hands & Feet Abnormalities

- Polydactyly
- Oligodactyly
- Syndactyly
- Clinodactyly
- Amelia
- Meromelia
- Club Hand / Foot
- Rockerbottom Feet
- Sandal Toes

Polydactyly

- Presence of additional digit
- Range from a fleshy nubbin to a complete digit with controlled flexion and extension

Polydactyly

- More common in hands than feet

Polydactyly

- Postaxial polydactyly
 - ulnar side of the hand & fibular side of the foot
- Preaxial polydactyly
 - Radial side of the hand & tibial side of the foot

Polydactyly

- Preaxial
 - Chondroectodermal dysplasia
 - Short-rib polydactyly syndrome type II
 - Carpenter syndrome
- Postaxial
 - Chondroectodermal dysplasia
 - Short rib-polydactyly syndrome (type I, type III)
 - Asphyxiating thoracic dysplasia
 - Otopalatodigital syndrome
 - Mesomelic dysplasia Werner syndrome (no thumbs)

Oligodactyly

- Fewer than 5 digits per extremity
Syndactyly

- Fused digits, either cutaneous or osseous

Poland syndrome
- Carpenter syndrome
- Aper syndrome
- Otopalatodigital syndrome (type II)
- Mesomelic dysplasia Werner type
- TAR syndrome
- Jarcho-Levin syndrome
- Roberts syndrome
- Triploidy

Clinodactyly

- Permanent bend in one or more digits or persistently overlapping digits
- Associated with trisomy 18

Amelia

- Absence of the limbs

Meromelia

- Absence of the hands and most of the forearm

Club Hand

Classified into two categories:

- Radial club hand
 - Absent thumb
 - Thumb hypoplasia
 - Thin first metacarpal
 - Absent radius

- Ulnar club hand (less common)
 - Mild deviations of the hand of the ulnar side of the forearm
 - Complete absence of the ulna
Club Hand

Clubbing of the hand and webbing at the wrist and elbow consistent with early onset of fetal akinesia.

Club Foot

- All metatarsals (& toes) are visible in the same plane as the tibia & fibula, roughly perpendicular to them.

Club Foot

- Medial deviation and inversion of the sole
- Familial history 15%
- Twice as frequent in males

Club Foot: Associated Findings

- Chromosomal abnormalities (tri 18 > 13)
- Neural tube defect; CNS disorders
- Neuromuscular disorders
- Crowding: oligohydramnios, multiples, fibroids, amniotic bands
- Other skeletal abnormalities
 - arthrogryposis, skeletal dysplasia, genetic syndromes
- Heart defects, cleft lip, renal abnormalities

Club Foot - Types

Types of club foot and associated ultrasound images.
Rocker-bottom Feet

- Characterized by a prominent heel and a convex sole
- Associated w/ >30 malformation syndromes, especially trisomy 18

Sandal Toes

- Space between 1st & the 2nd toe (trisomy 21)

Arthrogryposis

- Contractures of the extremities
 - Hand is persistently flexed
 - Contracture of the ankle

Arthrogryposis

- Due to:
 - Neuropathic abnormalities
 - Muscular abnormalities
 - Connective tissue abnormalities
 - Space limitations within the uterus
 - Intrauterine vascular compromise

- Associated with:
 - Bilateral renal agenesis
 - Spina bifida
 - Sacral agenesis
 - Metatrophic or diastrophic dwarfism

Abnormal skull Contour

- Frontal bossing
 - Thanatophoric dysplasia
 - Osteogenesis imperfecta

- Cloverleaf skull
 - Homozygous achondroplasia
 - Thanatophoric dysplasia
Frontal Slanting

- Scaphocephaly
- Microcephaly

Sagittal View – Facial Profile

- Mandible Anomalies
 - Part of more than 100 genetic syndromes
 - Micrognathia *
 - Insufficient size
 - Retrognathia
 - Recession of the chin

Facial Profile View

- Prognathia
- Micrognathia
- Retrognathia

- Micrognathia
 - small chin – prominent upper lip
 - Otocephaly
 - Pierre Robin sequence
 - Fetal alcohol syndrome
 - Achondrogenesis
 - Triploidy & trisomy 18 & 13
• Severe Kypho-scoliosis
• Abnormal Neck/Chin
• Webbing from arms to chest

• The term *dysplasia* means
 – Intrinsic growth disturbance occurring during the early stages of fetal development

Skeletal Dysplasia

What is difficult?
• Precise diagnosis of bone dysplasia
Skeletal Dysplasia

What is important?
- Differentiation between a lethal and a non-lethal variety
 - Antenatal care
 - Prediction of fetal outcome

Clues to Lethal Skeletal Dysplasia

1. Early onset severe limb shortening
2. Small chest with short ribs
3. Fractures or marked bowing
4. Clover leaf skull
5. Hydrops
6. Demineralization
7. Early severe polyhydramnios

- Femur/abdominal circumference ratio < 0.16 suggests lethality
- Chest circumference/abdominal circumference ratio < 0.8 suggests lethality

Lethal Skeletal Dysplasia is Not Subtle!

Thanatophoric Dysplasia

- The most common lethal skeletal dysplasia
- Name means “seeking death”
- Birth prevalence of ~ 0.7-0.8 in 10,000
- Prenatal genetic testing
 - Mutation in FGFR3 gene

Thanatophoric Dysplasia - Features

- Long bones
 - Very short & curved
- Head
 - Macrophagy
 - Frontal bossing + depressed nasal bridge
 - Cloverleaf-shaped skull
- Chest
 - Narrow thorax
 - Short ribs
- Small short & wide iliac wings

Common Skeletal Dysplasias

Osteochondrodysplasias

Abnormalities of cartilage or bone growth & development

1. Thanatophoric Dysplasia (lethal)
2. Acondroplasia (usually not lethal)
3. Osteogenesis Imperfect (type II lethal)
4. Achondrogenesis (lethal)
5. Hypophosphatasia (some types lethal)
Thanatophoric Dysplasia

- Narrow chest, protuberant abdomen, abnormal chest/abd ratio, bell-shaped

- Short ribs

- Micromelia (short limbs)

- Macrococania, frontal bossing, depressed nasal bridge, cloverleaf shape (14% (type II))

- "Type I" (sporadic)
 - Telephone receiver femurs
Thanatophoric Dysplasia

- **Type II** (autosomal recessive)
 - Femurs are straight but the skull is Cloverleaf shaped

- Small Thorax + short ribs
- Micromelia
- Large head with a prominent forehead
- Type I (sporadic)
 - Telephone receiver femurs
- Type II (autosomal recessive)
 - Femurs are straight but the skull is Cloverleaf shaped
 - Severe polyhydramnios – early onset

Associated anomalies
- Holoprosencephaly
- Agenesis of the corpus callosum
- Ventriculomegaly
- Horseshoe kidney
- Hydronephrosis
- Congenital heart disease

US Findings
- Disproportionately large head
- Prominent forehead
- Depressed nasal bridge
- Small nose with anteriorly deviated nostrils
- Increased distance between tip of nose and lower edge of chin
- Short neck
- Narrow and short thorax
- Very short limbs, dwarfism
- Distended abdomen
- Polyhydramnios, early onset

Achondrogenesis

- Lethal skeletal dysplasia
- Birth prevalence of about 1 in 40,000

US Findings
- Severe micromelia
- Redundant soft tissue
- Mimics hydrops
Achondrogenesis

- Type I (autosomal recessive) – 20%
 - Poor ossification of spine & skull
 - Short fractured ribs
- Type II (sporadic) – 80%
 - Hypo-mineralization of the vertebral bodies
 - Normal mineralization of the skull
 - No rib fractures

Achondroplasia

- Most common heritable non-lethal skeletal dysplasia
- Most common cause of short stature with disproportionately short limbs
- An autosomal dominant condition
- Birth prevalence of about 1 in 40,000
- Normal intellect and life span
- Mean adult height 52” for men, 49” for women
- Orthopedic, orthodontic, neurologic sequelae
- Diagnosis may not become obvious until 22–24 weeks

Achondroplasia

- Most common heritable non-lethal skeletal dysplasia
- Most common cause of short stature with disproportionately short limbs
- An autosomal dominant condition
- Birth prevalence of about 1 in 40,000
- Normal intellect and life span
- Mean adult height 52” for men, 49” for women
- Orthopedic, orthodontic, neurologic sequelae
- Diagnosis may not become obvious until 22–24 weeks

Achondroplasia

- Homozygous condition, lethal
 - manifests in abnormally short limbs earlier than the heterozygous form

Achondroplasia

- Chest normal
- Disproportionally short limbs (rhizomelia)
 - Normal ossification
 - No fracture
 - No bowing or angulation
 - Upper extremity more affected than lower
- Cranium / Face
 - Enlarged head
 - Frontal bossing
 - Depressed nasal bridge

Proximal femoral diaphyseal-metaphyseal angle

- Normal angle
 - 22 weeks: 98.5 ± 6.8°
 - 32 weeks: 105.6 ± 7.3°
- Angle is increased in affected fetuses
- In 1 study, 5 of 6 affected fetuses had angle > 130°
Achondroplasia

“Trident Hand”

Osteogenesis Imperfecta

- Genetically heterogeneous group of disorders presenting with fragility of bones, blue sclerae, loose joints and growth deficiency
- Advanced paternal age is a risk factor for OI

- **Type I**
 - Most common
 - Autosomal dominant condition
 - Birth prevalence of about 1 in 30,000
 - 2nd & 3rd trimester ultrasound may demonstrate fractures of long bones
 - Skeletal hypoechogenicity & limb bowing are frequently not detected until after 24 weeks
 - Blue sclera
 - Progressive deafness, but life expectancy is normal

- **Type II**
 - Lethal disorder
 - Birth prevalence of about 1 in 60,000
 - Severe bone shortening and bowing due to multiple fractures affecting all long bones and ribs
 - Poor mineralization of the skull
 - Limited limb movement
Osteogenesis Imperfecta Type II

Severe bone shortening & angulation due to multiple fractures

Narrowly spaced ribs

“Beaded” ribs and “wrinkled” bones due to multiple fractures

Concave, bell-shaped chest due to rib fractures

Hypomineralization of the cranium

Compression of skull by transducer
Osteogenesis Imperfecta Type III

- **Nonlethal**, autosomal recessive, rare
- Progressively deforming condition
- Long bone shortening & deformity may not become apparent until 19-22 weeks gestation
- Multiple fractures present at birth
- Scoliosis, very short stature, progressive deformities from birth to adolescence

Osteogenesis Imperfecta Type III

- Bowed femur
- Multiple fracture represented by discontinuities in the femur
- Decreased ossification – no posterior shadowing

Osteogenesis Imperfecta Type IV

- Mildest presentation of OI
- Autosomal dominant condition
- Not detectable on prenatal US
- Premature osteoporosis in 40’s & 50’s
- No associated hearing impairment

Hypophosphatasia

- **Lethal**, autos recessive condition
- Birth prevalence of about 1 in 100,000
- Severe shortening of the long bones
- Small thorax
- Hypominalization of the skull & long bones
- Abnormal alkaline phosphatase assays
- Polyhydramnios

Hypophosphatasia

- Poor mineralization

Hypophosphatasia

- Demineralized segment where the vertebral bodies have a “ghost” outline and no acoustic shadowing
Hypophosphatasia

- SEVERE demineralization
- Bones
 - Thin
 - Delicate
 - Absent
- Hypoplastic ribs
- Severe micromelia
- Fractures not typical;
 - thin bowed long bones

Sirenomelia
Mermaid Syndrome

- A lethal congenital anomaly associated with gestational diabetes
- Partial to total sacral agenesis
- Fusion of the lower extremities
- Bilateral renal agenesis (oligohydramnios, pulmonary hypoplasia)

Sirenomelia

- Single femur and tibia at midline and a deformed foot
- Iliac bones are abnormally located

Resources

- Skeletal Dysplasia Registry – NIH funded
 - www.lpaonline.org
 - www.csm.edu/genetics/skeldys/nomenclature.html
 - www.TheFetus.net

Fetal Musculoskeletal System

- Cranium (shape, ossification)
- Facial profile
- Spine
- Bones
 - Severity & Type of Shortening
 - Morphology, Mineralization, Fractures
- Chest (Thoracic / abdominal circumference ratio)
- Polyhydramnios

Thank You